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NOMENCLATURE 

Biot number, hL/k or hr,/k; 

Fourier number, at/L? or at/r:; 

heat transfer coellicient: 

Bessel functions; 

thermal conductivity 
half-thickness of slab: 

radius of sphere or cylinder: 

coordinates: 

dimensionless coordinates r/r,, or x/L; 

time; 

temperature. 

Subscripts 

0, 
m, 

n, 
ex. 
ext. 

eigenvalues: 

extrapolated distance; 

dimensionless temperature, (T- T,)/(Ta - T,). 

initial condition; 
ambient condition; 

order of eigenvalues: 

exact ; 
extrapolated. 

1. INTRODUCTION 

Greek symbols THE TEMPERATURE distribution in heat transfer problems 

a. thermal diffusivity: satisfies a differential equation. The differential equation 
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together with initial and boundary conditions gives a solu- 

tion for the temperature distribution at any point in the 

medium. The convective boundary condition, also known 

as the boundary condition of the third kind, is of prime 

importance in heat transfer calculations. The temperature 

distribution will be more readily obtained if the convective 

boundary condition is replaced with a known temperature 

at a new boundary. This is done by extrapolating the bound- 

ary and specifying the temperature on the new boundary. 

In this paper a model employing a linear boundary 

extrapolation (from now on referred to as LBE model) is 

proposed which readily provides the information on the 

extrapolated boundary. The use of the linear extrapolated 

boundary condition has been very successful in neutron 

diffusion problems [l]. More sophisticated models using 

neutron transport theory have also been introduced [2,3]. 

The transient temperature distribution, in the problem of 

heat transfer by conduction can be solved by separation of 

variables in many coordinates of interest. In the case of 
convective boundary condition the eigenvalues are solutions 

of a transcendental equation which involves the eigen- 

functions as well as its derivatives. These eigenvalues have 

been found for some coordinates of practical importance, 

but have not been listed for other coordinate systems [4]. 

If the temperature is known on the extrapolated boundary, 

the eigenvalues are either known or can be calculated easier 

than the case of convective boundary condition. 

The purpose of this paper is to find the range of applica- 

bility of the proposed model by comparing the exact solu- 

tions with those obtained from LBE model for different 

geometries. 

2. THEORY 

Consider a convective boundary condition at a planar 

boundary x = L. It is easy to show that for planar boundaries 

the linear extrapolation distance is E = k/h. Therefore for 

the LBE model the boundary condition is 

T = T,. the ambient temperature when x = L + k/h. (1) 

It should be pointed out that the temperature distribution 

using the extrapolated boundary is meaningful in the do- 

main of the problem and it is not valid outside the actual 

boundary of the problem. Furthermore, the treatment given 

here is valid for planar boundaries, and it is approximately 

correct for concave (non-reentrant) boundaries [Z]. In this 

paper the temperature distributions of infinite slab, infinite 

cylinder and sphere for which exact solutions can be found 

[5] are considered. Since the boundary value problems 

involved are mathematically simple, only the results of the 
LBE model for the three geometries are given below. The 

generalization to the three dimensional problems is straight- 
forward. 

(a) Injnite slab of thickness 2L 
The dimensionless temperature distribution is given by 

( 2n-1 B. 2 
exp - -XI 

2 1 + Bi ) 
F, (2) 

where the dimensionless coordinate, Fourier number and 

Biot number are respectively 

X = x/L, F, = utJL2, and Bi = hL/k. 

(b) Infinite cylinder of radius rO 

” = .zl&Jo(P.R&)exp - (g)‘FO (3) 
00 

where &‘s are the zeroes of Bessel function J,, R = r/r,,, 
F, = at/$, and Ei = hr,/k. 

(c) Sphere of radius r,, 

exp - (nn&yF, (4) 

where Bi = hr,Jk and F, = ut/r$ 
Note that the temperature distribution using the LBE 

model does not require solution ofa transcendental equation 

for evaluation of eigenvalues. 

3. RESULTS AND DISCUSSION 

To investigate the applicability of the LBE model the 

exact solutions for slab, cylinder, and sphere [5] are com- 

pared with solutions resulting from the LBE model. For the 
cornpat-ison the per cent error is defined as 

0,x - eert 
Per cent error = ___ 

I I e 
x loo. (5) 

51 

For infinite Biot number the extrapolated boundary 

coincides with the actual boundary; the eigenvalues for the 

two cases will be equal and the error is zero. The solid curves 

in Fig. 1 show the percent error for temperature at the mid- 

plane of slab. From Fig. 1 it is seen that the error decreases 
as the Biot number increases and hence the extrapolation 

distance decreases. The error also decreases for small values 
of the Fourier number. The error becomes negligible when 

the Biot number gets to be large. 
It may seem that for large Biot numbers we can do without 

the boundary extrapolation by assuming the temperature 
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FIG. 1. Per cent error for the midplane slab tempetxture. as 
a function of rhe Biot number for difkent Fourier numbers. 

FIG. 2. Per cent error for the center line temperature of an 
infinite cylinder. as a funcfion of the Biot number for different 

Fourier numbers. 
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FIG. 3. Per cent error for the temperature at center of a 
sphere. as a function of the Biot number for different Fourier 

numbers. 
1 

FIG. 4. Per cent error for the temperature at different positions 
in a slab. as a function of the Biot number for different 

Fourier numbers. 
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on the actual boundary to be equal to the ambient tempera- 

ture. The dashed curves in Fig 1 represent the percent error 

if the actual boundary is used instead of the linear extrapolated 

boundary. It is informative to note that the error jumps to 

about 70 per cent for F, = 5 and Bi = 20 if the LBE model 

is not used compared to an error of 1 per cent if the LBE 

model is used. This clearly shows the importance of the 

linear boundary extrapolation. The difference in error using 

the actual boundary and the LBE model becomes more 

pronounced for large Fourier numbers. 

Figures 2 and 3 show the results for the cylinder and sphere. 

The regular behaviour of error curves of slab in Fig. 1 is 
seen to be absent in the cylinder sphere examples. The 

irregular behaviour of error curves for cylinder and sphere 

is due to the fact that for these geometries the extrapolated 

distance is a function of the curvature [2] and its value is 

not simply k/h as obtained for planar boundaries. We 
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FIG. 5. Per cent error for the temperature at different posi- 
tions in an infinite cylinder, as a function of the Biot number 

for different Fourier numbers. 

observed that the error for cylinder and sphere can be in 

most cases reduced if a modified extrapolation distance 

greater than k/h is used. The error with the modified bound- 
ary is very sensitive to value of the extrapolation distance. 

For large Biot numbers the error for cylinder and sphere 
(cf. Figs. 2 and 3) is small even if k/h is used as the extrapolated 

distance. 
Figure 4 shows the error for slab using the LBE model for 

different Biot numbers with the Fourier number being used 

as a parameter. The solid and the dashed curves represent 

the error for x = 0.5 and x = 1 respectively. In general 

as the distance from the slab center increases so does the 

error. This behaviour is due to the fact that as one gets 

closer to the center of the slab the effect of a change in the 

boundary gets smaller. 

Figures 5 and 6 show the results for the cylinder and 

sphere respectively. The solid curves represent the error 

for R = 0.5 and the dashed curves show the error for the 

surface temperature, i.e. R = 1. The irregular behaviour of 

the error curves is again due to the use of a simple planar 

extrapolation distance k/h for cylinder and sphere. 
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FIG. 6. Per cent error for the temperature at different positions 
in a sphere, as a function of the Biot number for different 

Fourier numbers. 

Several extrapolation distances other than k/h were used 

for the cylinder and sphere in an attempt to reduce the 

magnitude of the error. Although the results were favourable, 

no general conclusion could be reached from them. If 

the first eigenvalue for an exact solution is known, the extra- 

polation distance can be modified so that the same tempera- 
ture is obtained for a given Fourier number. Second and 

higher eigenvalues will be obtained using the modified 

extrapolation based on the value of the first exact eigenvalue. 

The temperature distribution using these eigenvalues is 

expected to give a better result than using the extrapolation 
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distance k/h. This technique has the advantage of giving the 

correct result for large Fqurier numbers, since for large 1, 
Fourier numbers the first eigenvalue plays the dominant 

role in the temperature distribution. 2. 
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NOMENCLATURE 

At,, Ai,, B,, B,, constants; 

C,i, specific heat at constant pressure in the ith 

section ; 
DZ, 
4”. 
i, j, k, 
J 
K:: 

thermal diffusivity in the ith section: 

constant; 

integers: 

zero order Bessel function of the first kind; 

thermal conductivity in the ith section; 

KjA(x, t), Kj,(x, t), Kjc(x, t), functions of space and time, 

defined by equations (17H19); 

M,,, Ni,, derived eigenfunction terms (dimensionless); 

Qi, distributed ‘source in the ith section; 

r, time ; 
T(x, 0. temperature in the ith section; 

X,(x), eigenfunction (dimensionless) ; 
X, spatial coordinate; 

Y 0, zero order Bessel function of the second kind ; 

Y.. eigenvalue ; 
Pi. density in the ith section. 

probes is not available has led logically to a program of 

indirect experimental measurements. The use of proper 

analytical techniques, along with indirect experimental data, 

allows the determination of the desired information at 

locations inaccessible directly by experimental probes. 

In this type of problem one seeks the transient boundary 

conditions given the initial and some time-dependent 

conditions in the interior of the media. This is called an 

inverse problem or an interior value problem in contrast to 

a boundary value problem. 

At present, the only technique for the solution of the 

inverse problem in composite media is a numerical method 

proposed by Beck [ 11. Mulholland and San Martin [2] 

used the results of a known exact solution to obtain the 

internal and external temperature history of a composite. 
The objective of this paper is to present an analytical method 

which builds on the ideas presented in [2] for treating such 

problems in composite materials composed of k solidly 

joined plates. cylinders or spheres. 

INTRODUCTION 

THE PROBLEMS associated with obtaining direct experimental 
data in extreme environments and when space for data 

STATEMENT OF PROBLEM 

The heat conduction equation for the ith section of k 

solidly joined plates, cylinders or spheres is 


